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We report on the unusual nature of the � � 0 state in the integer quantum Hall effect (QHE) in graphene
and show that electron transport in this regime is dominated by counterpropagating edge states. Such
states, intrinsic to massless Dirac quasiparticles, manifest themselves in a large longitudinal resistivity
�xx * h=e2, in striking contrast to �xx behavior in the standard QHE. The � � 0 state in graphene is also
predicted to exhibit pronounced fluctuations in �xy and �xx and a smeared zero Hall plateau in �xy, in
agreement with experiment. The existence of gapless edge states puts stringent constraints on possible
theoretical models of the � � 0 state.
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The electronic properties of graphene [1], especially
the anomalous integer quantum Hall effect (QHE) [2,3],
continue to attract significant interest. Graphene fea-
tures QHE plateaus at half-integer values of �xy �
��1=2;�3=2; . . .�4e2=h where the factor 4 accounts for
double valley and double spin degeneracy. The ‘‘half-
integer’’ QHE is now well understood as arising due to
unusual charge carriers in graphene, which mimic massless
relativistic Dirac particles. Recent theoretical efforts have
focused on the properties of spin- and valley-split QHE at
low filling factors [4–9] and fractional QHE [10]. Novel
states with dynamically generated excitonlike gap were
conjectured near the Dirac point [11–13]. However, experi-
ments in ultrahigh magnetic fields [14] have so far revealed
only additional integer plateaus at � � 0, �1 and �4,
which were attributed to valley and spin splitting.

The most intriguing QHE state is arguably that observed
at � � 0. Being intrinsically particle-hole symmetric, it
has no analog in semiconductor-based QHE systems.
Interestingly, while it exhibits a steplike feature in �xy,
the experimentally measured longitudinal and Hall resist-
ance [14] (�xx and �xy) display neither a clear quantized
plateau nor a zero-resistance state, the hallmarks of the
conventional QHE. This unusual behavior was attributed to
sample inhomogeneity [14] and remains unexplained. In
this Letter, we show that such behavior near the Dirac point
is in fact intrinsic to Dirac fermions in graphene and
indicates an opening of a spin gap in the energy spectrum
[4]. The gap leads to counter-circulating edge states carry-
ing opposite spin [4,5] which result in interesting and
rather bizarre properties of this QHE state. In particular,
even in the complete absence of bulk conductivity, this
state has a nonzero �xx * h=2e2 (i.e., the QHE state is
dissipative) whereby �xy can change its sign as a function
of density without exhibiting a plateau.

We start by reviewing the experimental situation near
� � 0. Our graphene devices were fabricated as described
in Ref. [1] and fully characterized in fields B up to 12 T at

temperatures down to 1 K, revealing the behavior charac-
teristic of single-layer graphene [2]. Several devices were
then investigated in B up to 30 T, where, besides the
standard half-integer QHE sequence, the � � 0 plateau
becomes clearly visible as an additional step in �xy
(Fig. 1). We note, however, that the step is not completely
flat, and there is no clear zero-resistance plateau in �xy.
Instead, �xy exhibits a fluctuating feature away from zero
which seems trying to develop in a plateau [Fig. 1(b)]. [In
some devices �xy passed through zero in a smooth way
without fluctuations.] Moreover, �xx does not exhibit a
zero-resistance state either. Instead, it has a pronounced
peak near zero � which does not split in any field. The
value at the peak grows from �xx � h=4e2 in zero B to
�xx > 45 k� at 30 T [see inset of Fig. 1(b)].

The absence of both hallmarks of the conventional QHE
could cast doubt on the relation between the observed extra
step in �xy and an additional QHE plateau. However, the
described high-field behavior near � � 0 was found to be
universal (reproducible for different samples, measure-
ment geometries and magnetic fields above 20 T). It is
also in agreement with that reported in Ref. [14].
Moreover, one can generally argue that the QHE at � �
0 cannot possibly exhibit the usual hallmarks. Indeed, �xx
cannot exhibit a zero-resistance state simultaneously with
�xy passing through zero due to the carrier-type change
because zero in both �xy and �xx would indicate a dissipa-
tionless (superconducting) state.

To analyze the anomalous behavior of the high-field
QHE, we note that all microscopic models near the Dirac
point can be broadly classified in two groups, QH metal
and QH insulator, as illustrated in Fig. 2. Transport prop-
erties in these two cases are very different. The QH insu-
lator [Fig. 2(b)] is characterized by strongly temperature
dependent resistivity diverging at low T. The metallic T
dependence observed at � � 0 clearly rules out this sce-
nario. In the QH metal [Fig. 2(a)], a pair of gapless edge
excitations [Fig. 2(a)] provides dominant contribution to
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�xx, while transport in the bulk is suppressed by an energy
gap. Such a dissipative QHE state will have�xx � e2=h�
�xy, i.e., nominally small Hall angle and apparently no
QHE. The roles of bulk and edge transport here effectively
interchange: The longitudinal response is due to edge
states, while the transverse response is determined mainly
by the bulk properties.

From a general symmetry viewpoint advanced in
Ref. [15] the existence of counter-circulating gapless ex-
citations is controled by Z2 invariants, protecting the spec-
trum from gap opening at branch crossing. In the spin-
polarized QHE state [4] this invariant is given by�z. While
for other � � 0 QHE states [11–13] such invariants are not
known, any viable theoretical model must present a mecha-
nism to generate gapless edge states.

The metallic temperature dependence indicates strong
dephasing that prevents onset of localization. To account
for this observation, we suppose that the mean free path
along the edge is sufficiently large, such that local equilib-
rium in the energy distribution is reached in between
backscattering events. For that, the rate of inelastic pro-
cesses must exceed the elastic backscattering rate: �inel �
�el. This situation occurs naturally in the Zeeman-split
QHE state [4], since backscattering between chiral modes
carrying opposite spins is controlled by spin-orbital cou-
pling which is small in graphene.

In the dephased regime, the chiral channels are de-
scribed by local chemical potentials, ’1;2�x�, whose devia-
tion from equilibrium is related to currents:

 I1 �
e2

h
’1; I2 �

e2

h
’2; I � I1 � I2; (1)

where I is the total current on one edge. In the absence of
backscattering between the channels the currents I1;2 are
conserved. In this case, since the potentials ’1;2 are con-
stant along the edge, transport is locally nondissipative,
similar to the usual QHE [16].

The origin of longitudinal resistance in this ideal case
can be traced to the behavior in the contact regions. [Note
the resemblance of each edge in Fig. 3(a) with two-probe
measurement geometry for the standard QHE.] We adopt
the model of termal reservoirs [17] which assumes full
mixing of electron spin states within Ohmic contacts [see
Fig. 3(b)]. With currents I1, I2 flowing into the contact, and
equal currents I�out�

1;2 �
1
2 �I1 	 I2� flowing out, the potential

of the probe is Vprobe �
h
e2 I
�out�
1;2 . Crucially, using Eq. (1),

there is a potential drop across the contact,
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FIG. 2 (color online). Excitation dispersion in � � 0 QH state
with and without gapless chiral edge modes, (a) and
(b) respectively. Case (a) is realized in spin-polarized � � 0
state [4], while case (b) occurs when symmetry is incompatible
with gapless modes, for example, in valley-polarized � � 0 state
conjectured in Ref. [14]. In the latter state a gap opens at branch
crossing due to valley mixing at the sample boundary.
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FIG. 3 (color online). (a) Schematic of transport in a Hall bar
with voltage probes. Chiral edge states carrying opposite spin,
Eqs. (3), are denoted by red and blue. Transport through the bulk
is indicated by dotted lines. (b) Voltage probe in a full spin
mixing regime [17] measures Vprobe �

h
2e2 �I1 	 I2�. Note finite

voltage drop across the probe, Eq. (2).

 

FIG. 1 (color online). Longitudinal and Hall conductivities �xx
and �xy (a) calculated from �xx and �xy measured at 4 K and
B � 30 T (b). The � � 0 plateau in �xy and the double-peak
structure in �xx arise mostly from strong density dependence of
�xx peak (green trace shows �xy for another sample). The upper
inset shows one of our devices. The lower insets show tempera-
ture and magnetic field dependence of �xx near � � 0. Note the
metallic temperature dependence of �xx.
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 �’ �
h

2e2 �I1 � I2�; (2)

equally for ’1 and ’2. The voltage between two contacts
positioned at the same edge [see Fig. 3(a)] is equal to
Vxx �

h
e2 I, which gives a universal resistance value [4].

This is in contrast with the usual QHE where there is no
voltage drop between adjacent potential probes [16,17].

The longitudinal resistance increases and becomes non-
universal in the presence of backscattering. It can be
described by transport equations for charge density

 @tn1 	 @x’1 � ��’2 � ’1�;

@tn2 � @x’2 � ��’1 � ’2�; ni � �i’i;
(3)

where ��1 is the mean free path for 1d backscattering
between modes 1 and 2, and �1;2 are compressibilities of
the modes 1 and 2. In a stationary state, Eqs. (3) have an
integral ~I � ’1 � ’2 which expresses conservation of
current I � e2

h
~I. The general solution in the stationary

current-carrying state is ’1;2�x� � ’�0�1;2 � �x~I.
For the Hall bar geometry shown in Fig. 3(a), taking

into account the contribution of voltage drop across con-
tacts, Eq. (2), we find the voltage along the edge Vxx �
��L	 1�~I, where L is the distance between the contacts. In
the absence of transport through the bulk, if both edges
carry the same current, the longitudinal resistance is

 Rxx � ��L	 1�
h

2e2 ; �xx � �w=L�Rxx; (4)

with w=L the aspect ratio. From �xx peak value (Fig. 1) we
estimate �w � 2:5, which gives the backscattering mean
free path of 0:4 �m. The metallic T dependence of �xx
signals an increase of scattering with T [Fig. 1(b) inset].
Similarly, �xx growing with B is explained by enhance-
ment in scattering due to electron wave function pushed at
high B towards the disordered boundary.

An important consequence of the 1d edge transport is
the enhancement of fluctuations caused by position depen-
dence of the scattering rate ��x�. Solving for the potentials
at the edge,

 ’1;2�x� � ’�0�1;2 �
~I
Z x

0
��y�dy; (5)

we see that the fluctuations in the longitudinal resistance
scale as a square root of separation between the contacts:

 �Vxx � ~I
Z x2

x1

���y�dy; �Rxx � �h=e
2�

���������
L=a

p
;

where a * ��1 is a microscopic length which depends on
the details of spatial correlation of ��x�. Similar effect
leads to fluctuations of the Hall voltage about zero average
value at � � 0. Treating the fluctuations of the potential at
each edge, Eq. (5), as independent, we estimate �Rxy �

�h=e2�
���������
L=a

p
, where L is the bar length.

These fluctuations manifest themselves in noisy features
in the transport coefficients near � � 0, arising from the
dependence of the effective scattering potential on electron
density. Such features can indeed be seen in �xy and �xx
around � � 0 [Fig. 1(b)]. As discussed below, away from
� � 0 bulk transport can short-circuit the edge transport.
This will lead to suppression of fluctuations in �xx and �xy
away from � � 0, in agreement with the behavior of the
fluctuations in Fig. 1(b).

Another source of asymmetry in voltage distribution on
opposite sides of the Hall bar at zero � is the potential drop
on a contact, Eq. (2). This quantity can be nonuniversal for
imperfect contacts, leading to finite transverse voltage.
Such an effect can be seen in �xy data in Fig. 1 near � �
0, where Hall effect in a pristine system would vanish.

To describe transport properties at finite densities around
� � 0, we must account for transport in the bulk. This can
be achieved by incorporating in Eq. (3) the terms describ-
ing the edge-to-bulk leakage:
 

@x’1 � ��’2 � ’1� 	 g� 1 � ’1�;

�@x’2 � ��’1 � ’2� 	 g� 2 � ’2�;
(6)

where  1;2 are the up- and down-spin electrochemical
potentials in the bulk near the boundary. Transport in the
interior of the bar is described by tensor current-field
relations with the longitudinal and Hall conductivities
��1;2�xx , ��1;2�xy for each spin component. Combined with
current continuity, these relations yield 2d Laplace’s equa-
tion for the quantities  1;2, with boundary conditions sup-
plied by current continuity at the boundary:

 ��i�xxn:r i 	 �
�i�
xyn
r i 	 g�’i �  i� � 0; (7)

i � 1; 2, where n is a unit normal vector. [In Eq. (7) and
below we use the units of e2=h � 1.] To describe dc
current, we seek a solution of Eqs. (6) on both edges of
the bar with linear x dependence ’i�x� � ’�0�i � Ex which
satisfies boundary conditions (7), where the functions  1;2

have a similar linear dependence. The current is calculated
from this solution as a sum of the contributions from the
bulk and both edges. After elementary but somewhat tedi-
ous algebra we obtain a relation I � 2E=~�, where

 

2

~�
�

4

2�	 g
	

w

��1�xx
	

w

��2�xx
�
�w�~��1�xy =�

�1�
xx � ~��2�xy =�

�2�
xx �2

2	�=��1�xx 	�=�
�2�
xx

;

(8)

with w the bar width and � � wg�=�2�	 g�. The quan-
tities ~��1;2�xy � ��1;2�xy � g=�2�	 g� represent the sum of the
bulk and edge contributions to Hall conductivities, and
��1;2�xx are defined as ��i�xx � ��i�xx=�~�

�i�2
xy 	 �

�i�2
xx �. The quan-

tity ~�, Eq. (8), replaces � in Eq. (4). At vanishing bulk
conductivity, ��1;2�xx ! 0, we recover ~� � �.

The Hall voltage can be calculated from this solution as
VH �

1
2 �’1 	 ’2 � ’10 � ’20 �, where ’i;i0 are variables at

opposite edges. We obtain VH � �E, where
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 � � 2w
~��1�xy ��	 �

�2�
xx � 	 ~��2�xy ��	 �

�1�
xx �

2��1�xx �
�2�
xx 	 ��

�2�
xx 	 ��

�1�
xx

: (9)

This quantity vanishes at � � 0, since ��1�xy � ��
�2�
xy and

��1�xx � ��2�xx at this point due to particle-hole symmetry.
In Fig. 4 we illustrate the behavior of the longitudinal

and transverse resistance, calculated from Eqs. (8) and (9),
as

 �xx � w~�=2; �xy � �~�=2; (10)

with �w � 6, gw � 1 [the omitted contact term (2) is
small for these parameters]. Conductivities ��1;2�xx , ��1;2�xy

are microscopic quantities, and their detailed dependence
on the filling factor is beyond the scope of this paper. Here
we model the conductivities��1;2�xx by Gaussians centered at
� � �1, ��1;2�xx ��� � e�A���1�2 , as appropriate for valley-
degenerate Landau level, whereby ��1;2�xy is related to ��1;2�xx

by the semicircle relation [18]: ��1;2�xy ��
�1;2�
xy � 2� 	

���1;2�xx �2 � 0. In Fig. 4 we used A � 5: however, we note
that none of the qualitative features depend on the details
of the model.

Figure 4 reproduces many of the key features of the data
shown in Fig. 1. The large peak in �xx is due to edge
transport near � � 0. The reduction in �xx at finite � is
caused by the bulk conduction short circuiting the edge
transport. The latter corresponds to the double-peak struc-
ture in Gxx in Fig. 4. We note that the part of Gxx between
the peaks exceeds the superposition of two Gaussians
which represent the bulk conductivity in our model. This
excess in Gxx is the signature of the edge contribution.
The transverse resistance �xy is nonzero due to imbalance

in ��1;2�xy for opposite spin polarizations away from the

particle-hole symmetry point � � 0. Notably, �xy does
not show any plateau in the theoretical curve (Fig. 4), while
Gxy calculated from �xy and �xx exhibits a plateaulike
feature. This behavior is in agreement with experiment
(Fig. 1 and Ref. [14]).

To conclude, QH transport in graphene at � � 0 indi-
cates presence of counter-circulating edge states dominat-
ing the longitudinal resistivity whereas the Hall resistivity
is governed by bulk propeties. Our model explains the
observed behavior of transport coefficients, in particular,
the peak in �xx and its field and temperature dependence,
lending strong support to the chiral spin-polarized edge
picture of the � � 0 state.
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FIG. 4 (color online). Transport coefficients �xx, �xy and
Gxx � �xy=��

2
xy 	 �

2
xx�, Gxy � �xy=��

2
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2
xx� for a Hall bar

(Fig. 3), obtained from the edge model (6) with account of bulk
conductivity [Eqs. (10), (8), and (9), see text]. The edge transport
shunted by the bulk conduction away from � � 0 results in the
�xx peak. Note the smooth behavior of �xy at � � 0, a tilted
plateau in Gxy, and a double-peak structure in Gxx.
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